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Abstract Using the technique of Message Passing Interface,
a parallelized version of a coupled wave-circulation model
was set up. The tested model is a regional one for simulating
the seas off China, which is comprised of 450,625 elements
and 30 vertical sigma layers. The implementation efficiency
was evaluated on two kinds of computers, the HP Integrity
Superdome and SGI Altix 4700 multiprocessor. The numerical
results show that the low-communication high-extra-
computation scheme (LCHC) produces higher efficiency than
the high-communication no-extra-computation scheme
(HCNC) while the number of processors exceeds 24 for HP
Integrity Superdome and eight for SGIAltix 4700, respectively.
The experiments with both LCHC and HCNC scheme show
super-linear speed-up when the number of processors is small.
The model with the LCHC scheme is preferred as it achieves
parallel efficiency in excess of 90% on the HP machines for all
experiments with the number of processors no more than 100,
while the efficiency decreases rapidly with the HCNC scheme
after the number of processors increases to more than 24.
Numerical results suggest that the parallelization of this
coupled wave-circulation model is efficient and portable to a
variety of parallel architectures.
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Communication

1 Introduction

It is noted that the vertical mixing induced by surface wave
motion plays a key role in the formation of the upper mixed
layer in spring and summer (Qiao et al. 2004a, b). Matsuno
et al. (2006) measured the vertical mixing in the East China
Sea and found that the distribution of vertical mixing is in
accordance with the wave-induced vertical mixing scheme
suggested by Qiao et al. (2004a, b). A coupled wave-
circulation model was developed in this study to verify and
test the wave mixing scheme. The coupled model was
comprised of the Princeton Ocean Model (POM) and the
Key Laboratory of Marine Science and Numerical Modeling
(MASNUM) wave number spectral model (Yuan et al. 1991;
Yang et al. 2005). The MASNUM wave model has been
parallelized by Wang et al. (2007).

Recently, an effort has been undertaken to apply this
coupled wave-circulation model to study high-resolution
circulations over decadal time scales and to develop a
forecasting system for China’s coastal regions. These
applications will demand significant computational resources
because of the high-grid density required to resolve fine-scale
physical processes in the coastal area. However, operational
integration of a forecasting system faces a time constraint. The
runtime for these high-resolution models on modern desktop
machines can be extremely long. A parallelization strategy for
POM based on widely used message passing interface (MPI)
technique is, therefore, needed.

Many global and regional ocean models, including
Miami Isopycnic Coordinate Ocean Model (Bleck et al.
1995), Regional Ocean Model System (Wang et al. 2005),
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the Modular Ocean Model (Beare and Stevens 1997), and
more recently, the Finite Volume Coastal Ocean Model
(Cowles 2008), support parallelization implementations.
Several parallel versions of the POM model have already
existed, e.g., pPOM (Giunta et al. 2007) and MP-POM
(Oberpriller et al. 1998). Boukas et al. (1999) successfully
tested and validated a parallel implementation of POM
using the PVM message passing library. Sannino et al.
(2001) compared the pure MPI version and the hybrid
MPI+Open-MP one to demonstrate the potential perfor-
mance of Parallel Hybrid-POM. The coupled parallel
atmosphere model (5th-GenerationMesoscaleMeteorological
Model (MM5)) and ocean model (POM) were developed and
verified using the Linux Belwulf system (Kim and Yamashita
2003); the parallel ocean model had an estimated speed-up
effect of four using 16 processors. Although tremendous
efforts have been made, the parallelization efficiency of
POM remains unsatisfactory; for example, the efficiency is
25% with 16 CPUs (from Table 1 of Kim and Yamashita
2003) while it is 65% with four nodes (from Fig. 3 of
Sannino et al. 2001). In this study, we adopt a new scheme,
the low-communication high-extra-computation scheme
(LCHC) (Sawdey et al. 1995; Beare and Stevens 1997) and
find that the parallelization efficiency of POM can reach
over 90%.

In this paper, POM is briefly presented in Section 2. The
new technique used to parallelize the serial code is
illustrated in Section 3, and model performance is reported
in Section 4. The application of this coupled model in the
seas off China is described in Section 5. Conclusion
remarks are given in the last section.

2 POM model

The POM is a numerical ocean circulation model developed
by Blumberg and Mellor (1987) for both coastal and open
ocean studies. To reduce computation time, time splitting
technique is used in its algorithms. The external mode of
POM is two-dimensional and requires a small time step due
to fast gravity waves, while the internal mode is three-
dimensional and uses a larger time step. The calculation of
the three-dimensional (internal mode) variables (such as
temperature, salinity, and horizontal velocity components)
is separated into a vertical diffusion time step and an
advection plus horizontal diffusion time step. The former is
implicit, whereas the latter is explicit.

3 Parallelization of POM

There are many tools to parallelize a serial model like
POM. For instance, there is a tool for parallelism using

additional zones (Oberpriller et al. 1998) and the PVM
message passing library (Boukas et al. 1999). Recently,
Giunta et al. (2007) developed a parallel implementation for
the POM with a nested-domain feature using the run-time
system library and the Fortran loop index converter. Among
these tools, OpenMP Application Program Interface
(OpenMP API) and MPI are two common and convenient
parallel schemes.

By taking advantage of parallelism within algorithms to do
many calculations simultaneously, MPI and OpenMPAPI are
powerful at reducing computing time. MPI is a language-
independent communications protocol and is often used as a
computer language on its own. It is portable on distributed and
shared memory machines, but its program is difficult to
develop and debug. In contrast, OpenMP is an extension to a
compiler, not a computer language. To use OpenMP,
programmers only add comments to the program, which are
used as hints by the compiler. So, OpenMP is easy to
implement. However, it could be only run on shared memory
machines. For a parallel coupled model to run efficiently on a
large variety of parallel machines, MPI is a good choice.

Sannino et al. (2001) applied the Single Program
Multiple Data (SPMD) method in POM based on the
hybrid MPI+OpenMP. Here, we describe how parallelization
issues have been addressed by using pure MPI in detail. Note
that two new parallel schemes were designed for a parallel
version of POM to obtain higher performance and be more
portable than the previous scheme. We chose the technique of
SPMD to write the parallel codes of POM. The basic idea of
SPMD is to decompose the computational domain into
subdomains and assign each subdomain to a different
processor. Each processor integrates the numerical model by
a separate computing process using the original code. In this
way, only one code needs to be maintained for both sequential
and parallel computing platforms. In addition, the sequential
code is reused entirely in the parallelization.

3.1 Domain decomposition

According to the SPMD method, we first implement
domain decomposition, which is an effective way to divide
computational work among processors. This parallel version
of POM is structured by employing a two (or one)-
dimensional geometric decomposition for the ocean compu-
tational grid. In particular, the grid is horizontally partitioned
into rectangular blocks evenly across the latitudinal and/or
longitudinal dimensions, leaving the vertical dimension
unchanged. It is noted that computation in the vertical
dimension is difficult to parallelize for the presence of an
implicit scheme in the code. In addition, the model ocean (like
the real ocean) is thin compared with its horizontal grids. This
makes it reasonable to ignore the vertical dimension when
parallelizing the code.
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The aforementioned partitioning scheme is called a
checkerboard or block-striped approach. Each processor is
assigned a continuous set of latitudes or longitudes in the
block-striped partitioning. Because a checkerboard parti-
tioning splits both latitude and longitude of the domain, no
processor is assigned any complete latitude or longitude. A
checkerboard-partitioned rectangular mesh maps naturally
onto a two-dimensional mesh of processors. POM was
designed to run on vector machines; hence, it is easy to
maintain load balance on each processor using this method
of partitioning.

3.2 Communication

The finite-difference method used for the first-order
derivatives in POM requires gradients determined from
values stored in neighboring grid points. Each subdomain is
then allocated to a single processor, which runs a complete
copy of the code, i.e., it is responsible for stepping forward
the dynamic ocean variables on the subdomain. Problems
occur when stepping forward variables at the perimeter of
the subdomain, which requires some variables from the
neighboring processors using out-of-bound array subscripts.
All these grid points, which are over-dimensioned in the
horizontal extent of the local subdomain, form an artificial
boundary.

To guarantee consistency of parallel computation with its
sequential computation, inter-processor communication is
needed. The declaration of arrays can be modified to add
extra fake zones, or called halo points. These zones,
generally known as overlap areas, contain copies of the
artificial boundary values stored on neighboring subdo-
mains (Kernel points) in the grid topology. During model
integral, communication among different processors is
carried out by means of MPI, a widely used message
passing library. Two types of inter-processor communica-
tions are used in the model: point-to-point communication
to update halo values among processors and global
communication to check the stability (CFL) condition and
to gather model outputs.

3.3 Parallel scheme

When testing on a cluster of workstations or a supercom-
puter, it is noticed that a number of bottlenecks contribute
to poor parallel efficiency. The frequency of inter-
processor communications and extra computations are
implemented to improve the performance of the parallel
code. The parallel schemes tend to be relatively straight-
forward; they aim to avoid over-complicating the code
with the technical aspects of parallelism. The following
describes the parallel schemes used in the parallel version
of POM.

3.3.1 High-Communication No-Extra Computation

All subdomain variables were overlapped using a slice of
one-grid points. These slices represent halo points containing
the copies of the values stored at neighboring kernel points.
This means that the variable dimensions were expanded for
one-grid point, e.g., the local valid bound of a computation
subdomain is larger than or equal to I1 and less than or equal
to I2 in longitude, and from J1 to J2 in latitude, where I1, I2,
J1, and J2 are valid local indices (I1/I2, J1/J2) for the
subdomain. The dimensions of variables were extended one
point grid from (I1/I2, J1/J2), and were in the ranges of (I1−1/
I2+1) and (J1−1/J2+1). The ranges of computation in each
subdomain were not overlapped and are composed a complete
domain on a processor.

In a complete time step, when a variable that affords a
value for the neighboring halo (artificial boundary) is
locally updated, a communication call should be carried
out to update the variable halo before it is used. As
illustrated in Fig. 1, in the initial implementation, each
processor calculates new values for all variables in its own
local domain, which is bounded by the halo S0. For each
time step, data exchange between adjacent processors must
occur. This message passing involves that a processor sends
values that have been updated and stored in S0, to adjacent
processors, then receives some values from adjacent
processors, and stores them in the halo R0.

As indicated in Fig. 2, the 2-D external mode (Loop
8000 in original POM code) and the three-dimensional
internal mode (Loop 9000 in original POM code) are the
most time-consuming part of POM. The external mode
calculation results in update of ocean surface elevation (EL)
and the vertically averaged velocities (UA and VA). From
the contents in the right box of Fig. 2, the parameters of
LHalo and L1 are set to zero in the high-communication
no-extra-computation scheme (HCNC) scheme. It is
obvious that the value in R0, the halo zones of the
intermediate variables (FLUXUA and FLUXVA), must be
updated by calling communication subroutine before Loop
410 for producing correct results of ELF (the ocean
surface elevation used in the external mode) in Loop 410,
because in Loop 405, the intermediate variables are
updated within a valid range (I1/I2, J1/J2). The halo
elements of the intermediate variables are not refreshed;
they are relied upon to calculate the variable of ELF at the
perimeter of the subdomain in Loop 410. So a communi-
cation event is requested prior to Loop 410. Care should
be taken to relate UAF and VAF, which is done in the
external mode by six synchronizations. In POM, 50
communications and 28 synchronizations are required to
complete a time-step computation. Therefore, this scheme is
suitable only for the low-computation high-communication
computer system.

Ocean Dynamics (2010) 60:331–339 333



3.3.2 Low-Communication High-Extra Computation

On many machines, barrier synchronizations are expensive
due to barrier execution overhead and high latency of
communication events. Especially on a high-computation
performance platform, it is clear that the frequency of
synchronization and communication events has a devastating
effect on the overall performance of the model. To resolve this
problem, a scheme is adopted to reduce communication
frequency, trading it for a small amount of extra computation
and the cost of some redundant storage (Sawdey et al. 1995;
Beare and Stevens 1997), which is called an additional
number of fake halos.

In determining the halo width, there must be a tradeoff
between communication and computation. If a large halo
width is used, the parallel regions are larger, more computation
occurs between synchronization and communication events,
fewer synchronization are necessary—the messages are larger
but fewer are sent, and increased redundant computations will
be performed. Thus, increasing the halo width can decrease the
number of communication and synchronization events, which,
in turn, can increase the efficiency of the parallel program.

We now consider the case of adding two extra halos, R1
and R2 (red region), based on the extra halo R0, to enlarge
the parallel region and reduce the frequency of communi-

cation (Fig. 1). When message passing occurs, data from
halos S0–S3 are packed and sent to adjacent processors,
while the corresponding message from adjacent processors
is received and stored in the halos of R0–R2. The most
important requirement for producing correct results from a
parallel program with large halo areas is the correctness of
reading data from the overlap areas. For the parallel
program to obtain correct results, data read from R0–R2
must be identical to the data storing in corresponding S0–
S2 on the neighboring processors. If we allow halo
elements to be filled or refreshed by communication only
with neighboring processors, then we simply need to ensure
that the correct communication events are generated, which
limits the size of the parallel regions and increases
communication. Allowing overlap elements to be refreshed
by computation could avoid these potential problems.

By the description of the right box in Fig. 2, once all
used variables adding extra halo zones (R1 and R2) are
refreshed by communication at the beginning of the
external mode, each processor could calculate the interme-
diate variables (FLUXUA, FLUXVA) within the domain
bounded by R1, namely the calculating range of longitude
from (I1−2) to (I2+2) and of latitude between (J1−2) and
(J2+2). Hence, the elements in the R1 and R0 halos are
already up to date and no more message passing is required

Fig. 1 Schematic diagram
of communication among
subdomains using an evenly
checkerboard decomposition.
The top-left figure shows the
program of communication in
HCNC scheme. For calculating
the variable at the perimeter of
the subdomain without extra
computation, an extra halo, R0
(cyan region), must be declared
for receiving data from the
neighboring inner halo, S0
(region included by cyan
rectangle). The remains clearly
explain the communication of
the LCHC scheme. In order
to reduce the frequency of
communication, two additional
outer halos, R1 and R2 (red
region), are declared to store
the values that have been sent
from the boundary halos, S1
and S2 (region included by read
rectangle), of adjacent domains.
The valid range of longitude in
the local domain is from I1 to
I2, while J1 and J2 represent the
minimal and maximal indices
of latitude
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for calculating the new values of ELF in the domain
bounded by R0 (I1−1/I2+1, J1−1/J2+1). Intermediate
variables (FLUXUA, FLUXVA) have updated their halo
data by this extra computation. By computing in Loop 410,
the halo (R0) elements of ELF are refreshed. When
calculating the UAF and VAF in Loops 420, 425, 430,
and 435, the parallel program can obtain correct results
without extra communication, because the halo values of
ELF updated by extra computing are identical to the values
that the halo elements shadow on the neighboring processors.
At the end of the external mode, communications are called to
update the halo variables and to prepare for the next step

(Fig. 2). This scheme decreases the number of synchroniza-
tions in the external mode to one every time step and reduces
the relatively expensive latency time. The number of
synchronizations was decreased from 28 to four.

Because each halo element corresponds to a valid
element on a different processor, refreshing halo elements
by computation leads to redundant computation. When a
processor computes a value to fill a halo element, the same
computation is being done by another processor to fill the
corresponding valid element. If the cost of computing the
halo element locally is less than that of getting the value
from the valid element on a different processor, then

Fig. 2 Flow structure of the
parallel POM code. The black
boxes, except for the content in
the right box, show the main
flow diagram of the serial
POM code. The boxes with
sidebars contain the names of
subroutines. The red boxes show
schematically where the parallel
sections (communication and
set parallel environment and
decomposition functions) are
inserted in the LCHC scheme.
The big black box on the right
is a detailed description of the
LCHC and HCNC schemes

Elapsed time (s) Number of processors

1 8 16 24 32 64 80 100

Exp. 1 18,795 3,075 1,892 1,598 1,218 668 566

Exp. 2 18,795 3,039 1,816 1,486 1,091 516 414

Exp. 3 31,497 3,760 2,018 1,386 1,065 646 540 471

Exp. 4 31,497 3,997 2,051 1,395 1,033 517 405 335

Table 1 Computation time of
four experiments

Ocean Dynamics (2010) 60:331–339 335



refreshing the halo by computation will increase the
computational performance.

4 Performance evaluation

The aforementioned domain decomposition and parallel
schemes have been successfully tested and validated in

shared memory architectures. Performance results presented
in this paper were obtained on two computer systems: HP
9000 Superdome Server and SGI Altix 4700 Server. The
HP 9000 Superdome Server is an ideal steppingstone to HP
Integrity servers based on the 64-bit 1.6 GHz Intel Itanium2
Processor. It provides 128 Montecito cores with 18 MB L3
cache and has 256 GB of shared memory. The SGI Altix
4700 Server is powered by a total of 42 Dual-Core Intel
Itanium Processors (64-bit 1.6 GHz, with 8 MB L3 Cache)
and 84 GB shared memory. The main difference between
these two types of servers is that HP 9000 Server has larger
L3 cache than that of SGI Altix 4700 Server. For
performance studies, we used the Intel Fortran compiler
and MPICH on SGI. On the HP machine, an HP Fortran
compiler and HP MPI were used. The Fortran compiler and
MPI code installed in SGI and HP machines are the other
main differences.

The model used here as a testing bed was a regional
model for seas off China, containing 30 vertical sigma
layers and with horizontal grid points of 721×625. The
horizontal resolution is (1/24)×(1/24)°. The external and
internal time steps were 4.14 and 124.2 s, respectively. Four
experiments were carried out to estimate the parallel
performance on different platforms (Exps. 1 and 2 ran on
SGI, while Exps. 3 and 4 ran on HP). Exps. 1 and 3 used
the HCNC scheme, while Exps. 2 and 4 used the LCHC
scheme.

Table 1 presents some detailed results of the regional
model for 3-day integration, taking 2,261 time steps

Fig. 3 Speed-up rates versus the number of processors for the parallel
codes. Results using the HCNC scheme (diamonds; used in Exps. 2
and 4) and LCHC scheme (triangles; used in Exps. 1 and 3).
Experiments 1 and 2 (dashed lines) were loaded on the SGI computer;
Exps. 3 and 4 (solid lines) were completed on the HP computer
system. The speed-up has been computed as T1/Tp, where T1 is the
total computing time using one processor, and Tp, using multiple
processors. As a reference, the ideal speed-up relation is also plotted
(black line with no symbols)

Fig. 4 Efficiency versus the number of processors for the parallel codes.
Results using the HCNC scheme (diamonds; used in Exps. 2 and 4) and
LCHC scheme (triangles; used in Exps. 1 and 3). Experiments 1 and 2
(dashed lines) were loaded on the SGI computer; Exps. 3 and 4 (solid
lines) were completed on the HP computer system

Fig. 5 Difference evolution between serial and parallel (adopting the
HCNC scheme) results of SST at the four different overlap corner
points during 2,264 model time steps. Black line is the difference
result of the lower-left corner point. Red, blue, and green lines,
respectively, show the error evolution of the lower-right, top-right,
and top-left corner points. The inset describes the decomposition of
the model domain
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without IO operation. Times were measured in seconds in
all cases. The sequential code on the SGI completed the
3-day integration in 18,795 s of elapsed time; while the
sequential model running onHP took 31,497 s. The sequential
code was, therefore, found to execute 1.68 times faster on the
SGI than that on the HP. The Intel Compiler may contribute to
the higher computing speed of SGI. It was found that the
elapsed time decreased with the number of processors. The
HCNC scheme (Exp. 1) produced higher parallel performance
than the LCHC scheme (Exp. 2) when the number of
processors was less than 8. The same was true for Exps. 3
and 4. The elapsed time shows that the LCHC scheme (Exp.
4) had a significant advantage when the number of processors
was more than 24 (Table 1); otherwise, the HCNC scheme
was preferred. In Exp. 4, the number of processors was
increased to 100, and the 3-day run was completed in 335 s
of wall clock time, just 70% of the elapsed time of Exp. 3.
The wall clock elapsed time for Exp. 2 was only 73% of that
for Exp. 1 as the number of processors reached 80.

Figures 3 and 4, respectively, display the speed-up rate
and parallel efficiency of the four experiments. As can be
seen from Fig. 4 (Exps. 1 and 3), efficiency exhibits a
super-linear behavior (more than 100%) when the number
of CPUs is not large. This kind of behavior is common in
cache-based machines. As the number of processors
increases, the size of the subdomain mapped to each

processor decreases, and more subdomains fit the cache.
Figure 3 shows that the speed-up of the computation (Exp.
4) remains nearly linear, with a maximum speed-up of 93.8
for 100 processors. The speed-up of Exp. 3 remains linear
when the number of processors is less than 24; its speed-up
quickly departures from the realized line when the number
exceeds 24. Figure 4 also shows that with 100 processors,
the efficiency of the HCNC scheme on HP quickly drops to
66.9%, while the efficiency of the LCHC scheme on HP
remains more than 93.0%. It is obvious that the LCHC
scheme is to be preferred when the number of processors
becomes more than 24 on a HP system. We note that the
speedup curves of Exps. 1 and 2 present same shape and
quickly departure the ideal line (Fig. 3). It is obvious that
the LCHC scheme gains an advantage over the HCNC
scheme on an SGI system while the number of the
processors is larger than eight. The efficiency of the LCHC
scheme remains 50% higher with the increase of the
processors. In contrast, the efficiency of HCNC quickly
dropped to 42% as the number of processors reaches 80.
Therefore, the LCHC scheme is the preferred one when the
number of the processors is large.

For comparison with the efficiency reported by Sannino
et al. (2001), we chose the elapsed time of 16 processors as
a reference time. The parallel efficiency of the LCHC
scheme is 87% and 93% on SGL and HP machines,

Fig. 6 Simulated sea-surface
currents (cm/s) and SST (°C)
for February 4, 2008 in the
Taiwan Strait from the high-
resolution coupled model. The
small inset represents the
model domain of (15–41° N,
105–135° E). The red rectangle
is the enlarged area
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respectively, while the efficiency of the parallel code using
MPI and OpenMP standard by Sannino et al. (2001) is
about 65%, even less than the parallel efficiency of our
HCNC scheme (>70%).

5 Application

The hindcast and forecast computations using the super-
high-resolution model were feasible by the success of the
code parallelization effort. A fine-resolution regional
hindcast system for the seas off China has been completed
using the parallelized coupled wave-circulation model. The
wave and ocean circulation models used in this hindcast
system are the parallel version of the MASNUM wave
model (Yuan et al. 1991; Yang et al. 2005; Wang et al.
2007) and the parallelized POM. It should be mentioned
that there are still tiny differences between the serial model
and the parallel model in the overlap regions (four corners
of each local domain); for example, the difference of sea
surface temperature (SST) is less than 0.1°C (Fig. 5). This
most likely is due to the truncation error in the overlap
region during communication. The lateral boundary con-
ditions (of temperature, salinity, sea level, and velocities)
for this regional model come from the global 0.5×0.5°
model results. The regional model was integrated for 6
year, driven by wind stress and heat fluxes from the
comprehensive ocean–atmosphere dataset. Then, 1-year sim-
ulation is implemented by using surface winds and heat fluxes
from a configuration of the MM5. Nudging-based data
assimilation techniques are used to incorporate satellite data
of SST. With the use of 32 processors of the SGI Altix 4700, a
1-year hindcast of this model without IO operation requires
around 42 h of wall clock time. SST and sea-surface current
vectors for February 2008 are shown in Fig. 6.

A forecast system for the seas off China is developed and
run since October 2007 based on the paralleled coupled wave-
circulation model. This forecast system completes each 3-day
forecast run in 2,440 s of elapsed time with output at every 6 h,
by using 24 processors of the SGI Altix 3700.

6 Conclusion

All previous efforts, especially those by Sannino et al.
(2001) and Kim and Yamashita (2003) using MPI and
OpenMP standards, are quite important for the speed-up of
POM. Here, two new parallel schemes of LCHC and
HCNC are designed to improve the performance of parallel
POM for a large variety of parallel machines.

Two efficient parallelization schemes were designed and
implemented for the coupled wave-circulation model. Our
numerical experiments show that the HCNC scheme is

preferred on these two computer systems when the number
of processors is less than 24 (HP) and eight (SGI). In
principle, the parallel code is able to implement super-high-
resolution simulation with high efficiency. The efficiency,
measured on two modern multiprocessor computer systems,
shows good performance for a representative application.
The parallel code is suitable to run efficiently on a large
variety of parallel machines based on the MPI standard
interface. In the quite near future, such as within 2 months,
we would like to release the code with the wave-induced
vertical mixing scheme and parallelization.
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